ГлавнаяКниги о котлахКотельные установки промышленных предприятий - Сидельковский Л.Н. Юренев В.Н.Низкотемпературная коррозия наружных поверхностей нагрева

Низкотемпературная коррозия наружных поверхностей нагрева

Низкотемпературная коррозия наружных поверхностей нагрева

Низкотемпературная коррозия наружных поверхностей нагрева возникает при конденсации на поверхности нагрева водяных паров и образовании жидкой пленки, являющейся электролито. Конденсация водяных паров возникает при температуре поверхности нагрева ниже точки росы, которая определяется парциальным давлением водяных паров в продуктах сгорания, увеличивающимся с повышением влажности топлива и содержания в нем водорода. Например, точка росы в продуктах сгорания АШ равна 27-28 °С, бурых углей 45-55 °С, мазута 44-45 °С и природного газа 54-55 °С. Наличие в продуктах сгорания S02 и S03 повышает температуру точки росы до 100-110°С.

На рис. 25.2 показаны зависимости температуры точки росы от наличия S03 и H2SO4 в продуктах сгорания.

Для особо сернистых топлив температура точки росы повышается до 150°С. При наличии водяных паров и сернистых соединений в продуктах сгорания образуется парообразная система Н20-H2SO4. Температура образования жидкой серной кислоты в продуктах сгорания определяется содержанием серы в топливе и при сжигании топлива с Sn=0,012 % кг/МДж равна 65°С, а при Sn=0,1/0,2 % кг/МДж она составит 125-140°С.

Конденсация чистых водяных паров при температуре поверхности ниже точки росы при отсутствии содержания в газах сернистых соединений может вызывать кислородную коррозию в воздухоподогревателе, расположенном в области низких температур, и в результате привести к сквозному разъеданию труб и перетеканию воздуха в газовую среду. Наличие в газах сернистых соединений и конденсация на поверхностях нагрева жидкой пленки, содержащей H2SO4, приводят к тому,что активизируется низкотемпературная коррозия наружных поверхностей нагрева.

На рис. 25.3 показаны зависимости скорости коррозии от температуры поверхности и от концентрации H2S04. Наибольшая скорость коррозии Кмакс имеет место при температуре стенки, близкой к температуре точки росы tр. При t>tр скорость коррозии уменьшается, а при дальнейшем повышении температуры - снова возрастает.

Как видно из рис. 25.3, а, имеется область температур стенки, при которой скорость коррозии незначительна и поверхность нагрева может работать длительное время. При работе на твердом сернистом топливе в зоне температур 70-110°С скорость коррозии не превышает 0,2 мм/год. При сжигании сернистого мазута скорость коррозии существенно выше, чем при сжигании твердого топлива, при этом характеристика K=f(t) не имеет безопасной зоны.

Наиболее активно низкотемпературная коррозия наружных поверхностей нагрева проявляется в воздухоподогревателях, в которых имеют место наиболее низкие температуры греющего и нагреваемого теплоносителей. Температура стенки трубы воздухоподогревателя, °С, исходя из баланса теплоты внутренней и внешней ее поверхности, определяется по формуле

где tг и tв - температуры продуктов сгорания на выходе из воздухоподогревателя и воздуха на входе в него, °С; ав и аг - коэффициенты теплоотдачи со стороны воздуха и газа, Вт/ (м2*К).

Из выражения (25.5) следует, что tст может быть получена выше температуры точки росы за счет увеличения температуры воздуха, поступающего в воздухоподогреватель, и уменьшения ав. Уменьшение ав, которое возможно за счет снижения скорости воздуха, связано с увеличением необходимой площади поверхности нагрева, а при загрязнении внутренней поверхности труб уносом не повышает tст и поэтому нецелесообразно. Широко применяемым методом предотвращения коррозии воздухоподогревателя является повышение температуры поступающего в него воздуха обычно путем рециркуляции горячего воздуха в воздухоподогревателе или предварительного подогрева воздуха в паровых подогревателях.

На рис. 25.4 показаны схемы повышения температуры поступающего в воздухоподогреватель воздуха путем рециркуляции горячего воздуха. Рециркуляция воздуха снижает температурный напор в воздухоподогревателе, повышает температуру уходящих газов и расход электроэнергии на дутье. При применении отдельного вентилятора для рециркуляции воздуха загрузка вентилятора остается неизменной и расход электроэнергии на рециркуляцию воздуха несколько уменьшается.

На рис. 25.4, в показана схема подогрева воздуха, поступающего в воздухоподогреватель в паровом подогревателе. Подогреватель устанавливается между напорной стороной дутьевого вентилятора и входной ступенью воздухоподогревателя. Он представляет собой трубчатый теплообменник, внутри труб которого проходит отработавший пар турбины при температуре около 120 °С. Снаружи трубы омываются потоком воздуха. В этом случае расход электроэнергии на дутье меньше, чем при применении рециркуляции, а использование отработавшего пара на подогрев воздуха несколько повышает регенерацию и за счет этого экономичность электростанции. Паровой подогрев воздуха при пропуске постоянного количества пара через подогреватель обеспечивает более высокий подогрев воздуха при пусках и остановках котла, что уменьшает коррозию воздухоподогревателя и при этих режимах. В некоторых установках подогрев воздуха в паровых калориферах осуществляют за счет пара низкого давления, получаемого в газовых испарителях, установленных за котлом.

Низкотемпературная коррозия наружных поверхностей нагрева исключается в первом ходе воздухоподогревателя путем применения в нем эмалированных трубок или изготовление их из некорродирующих материалов. В котлах, работающих на сернистых мазутах, присадкой доломита к мазуту, применяемой для предотвращения высокотемпературной коррозии, также снижается низкотемпературная коррозия наружных поверхностей нагрева в экономайзерах и воздухоподогревателях.

Перейти к другой главе: